Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site.
نویسندگان
چکیده
Enzymes use protein architectures to create highly specialized structural motifs that can greatly enhance the rates of complex chemical transformations. Here, we use experiments, combined with ab initio simulations that exactly include nuclear quantum effects, to show that a triad of strongly hydrogen-bonded tyrosine residues within the active site of the enzyme ketosteroid isomerase (KSI) facilitates quantum proton delocalization. This delocalization dramatically stabilizes the deprotonation of an active-site tyrosine residue, resulting in a very large isotope effect on its acidity. When an intermediate analog is docked, it is incorporated into the hydrogen-bond network, giving rise to extended quantum proton delocalization in the active site. These results shed light on the role of nuclear quantum effects in the hydrogen-bond network that stabilizes the reactive intermediate of KSI, and the behavior of protons in biological systems containing strong hydrogen bonds.
منابع مشابه
Dissecting Proton Delocalization in an Enzyme's Hydrogen Bond Network with Unnatural Amino Acids.
Extended hydrogen bond networks are a common structural motif of enzymes. A recent analysis proposed quantum delocalization of protons as a feature present in the hydrogen bond network spanning a triad of tyrosines (Y(16), Y(32), and Y(57)) in the active site of ketosteroid isomerase (KSI), contributing to its unusual acidity and large isotope shift. In this study, we utilized amber suppression...
متن کاملTheoretical Study of Heteroatom Resonance-Assisted Hydrogen Bond: Effect of Substituent on π-delocalization
The concept of Resonance Assisted Hydrogen Bond (RAHB), which usually occurs in b diketons, has a remarkable role in chemistry. These molecules, which contain heteroatom particularly O and N, are species with biological interest in protein folding and DNA pairing. Therefore, the amplification of hydrogen bonds strength by substituents may be important in life scie...
متن کاملQuantum mechanical investigation of 4-hydroxy phenyl azobenzene adsorption on the boron nitride nanotubes
In this study, the adsorption of 4-hydroxy phenyl-azobenzene on the surface of (4, 0) zigzag open-end boron nitride nanotube (BNNT) has been investigated by quantum calculations. In order to find the preferred adsorption site, different positions and orientations were considered. The impacts of donor-acceptor electron delocalization on the structural and electronic properties and reactivity of ...
متن کاملQuantum mechanical investigation of 4-hydroxy phenyl azobenzene adsorption on the boron nitride nanotubes
In this study, the adsorption of 4-hydroxy phenyl-azobenzene on the surface of (4, 0) zigzag open-end boron nitride nanotube (BNNT) has been investigated by quantum calculations. In order to find the preferred adsorption site, different positions and orientations were considered. The impacts of donor-acceptor electron delocalization on the structural and electronic properties and reactivity of ...
متن کاملAnion˗π and Intramolecular Hydrogen Bond Interactions in the Various Complexes of 1,3,5-Triamino-2,4,6-trinitrobenzene with H-, F-, Cl- and Br- Anions
The quantum chemical calculations were performed to investigate the interplay between the anion˗π and intramolecular hydrogen bond (IMHB) interactions in the various complexes of 1,3,5-triamino-2,4,6-trinitrobenzene (ANB) with Hˉ, Fˉ, Clˉ and Brˉ anions. For better understanding the cooperative effects, the parent molecules (ANB) and the corresponding complexes of 1,3,5˗trinitrobenzene with the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 52 شماره
صفحات -
تاریخ انتشار 2014